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Abstract

Diffusion Transformers have recently shown remarkable
effectiveness in generating high-quality 3D point clouds.
However, training voxel-based diffusion models for high-
resolution 3D voxels remains prohibitively expensive due to
the cubic complexity of attention operators, which arises
from the additional dimension of voxels. Motivated by the
inherent redundancy of 3D compared to 2D, we propose
FastDiT-3D, a novel masked diffusion transformer tailored
for efficient 3D point cloud generation, which greatly re-
duces training costs. Specifically, we draw inspiration from
masked autoencoders to dynamically operate the denoising
process on masked voxelized point clouds. We also pro-
pose a novel voxel-aware masking strategy to adaptively ag-
gregate background/foreground information from voxelized
point clouds. Our method achieves state-of-the-art perfor-
mance with an extreme masking ratio of nearly 99%. More-
over, to improve multi-category 3D generation, we intro-
duce Mixture-of-Expert (MoE) in 3D diffusion model. Each
category can learn a distinct diffusion path with differ-
ent experts, relieving gradient conflict. Experimental re-
sults on the ShapeNet dataset demonstrate that our method
achieves state-of-the-art high-fidelity and diverse 3D point
cloud generation performance. Our FastDiT-3D improves
1-Nearest Neighbor Accuracy and Coverage metrics when
generating 128-resolution voxel point clouds, using only
6.5% of the original training cost.

1. Introduction
Recent breakthroughs in Diffusion Transformers have made
remarkable strides in advancing the generation of high-
quality 3D point clouds. Notably, the current state-of-the-
art (SOTA), DiT-3D [23], leveraged a diffusion transformer
architecture for denoising voxelized point clouds, signifi-
cantly outperformed previous UNet-based methods such as
LION [33] by improving 1-Nearest Neighbor Accuracy (1-
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Figure 1. Comparison of the proposed FastDiT-3D with DiT-3D
in terms of different voxel sizes on training costs (lower is better)
and COV-CD performance (higher is better). Our method achieves
faster training while exhibiting superior performance.

NNA) at 8.49% and Coverage (COV) at 6.51% in terms of
Chamfer Distance (CD). They also achieved superior per-
formance compared to the previous best UNet-based mesh
generation model MeshDiffusion [21]. Based on their ex-
cellent experimental results, adopting transformer architec-
ture is expected to be the mainstream approach for 3D shape
generation tasks. Despite their efficacy, the voxel-based
diffusion transformer’s training overhead significantly in-
creases primarily due to the additional dimension when
transferring from 2D to 3D. This results in cubic complex-
ity associated with attention mechanisms within the volu-
metric space. For instance, training voxels of 128 × 128 ×
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128 takes 1,668 A100 GPU hours. Such a large amount of
computational resources is the bottleneck to further increas-
ing the input voxel size or scaling up these model architec-
tures. The training efficiency of diffusion transformers in
3D shape generation is still an unsolved problem.

In image generation and visual recognition, masked
training [5, 6, 15, 34] is widely adopted to improve train-
ing efficiency, which significantly reduces training time and
memory but does not comprise the performance. Consid-
ering the high redundancy of 3D voxels, only a partial of
the volumetric space is occupied. It is possible to generate
high-fidelity 3D shape training on a subset of voxels.

In this work, we introduce FastDiT-3D, a novel diffu-
sion transformer architecture explicitly designed to gener-
ate 3D point clouds efficiently. Inspired by masked au-
toencoders [15], we propose a dynamic denoising opera-
tion on selectively masked voxelized point clouds. We fur-
ther propose a novel foreground-background aware mask-
ing strategy, which adaptly aggregates information by dif-
ferentiating between the information-rich foreground and
information-poor background within the point clouds. This
innovative approach achieves an outstanding masking ra-
tio, with almost 98% of input voxels masked, superior to
the 50% observed in 2D [34], leading to a remarkable 13X
acceleration in training speed. Moreover, to address the
heightened computational demands posed by the increased
token length in 3D contexts, we integrate 3D window atten-
tion mechanisms within the decoder’s Transformer blocks.
Our training regimen employs a dual-objective strategy, ap-
plying a denoising objective to unmasked patches while
masked patches undergo a distinct point cloud generation
objective. Our approach not only accelerates the training
process but also achieves SOTA performance.

To enhance the capability of point cloud generation
across diverse categories, we incorporate Mixture of Ex-
pert (MoE) layers within the Transformer blocks. In this
way, we transform a dense 3D diffusion model into a sparse
one. Each category can learn a distinct diffusion path, and
each diffusion path is composed of different experts across
different layers. This design greatly alleviates the challenge
of difficult gradient optimization caused by multi-category
joint training.

Our comprehensive evaluation on the ShapeNet dataset
conclusively attests to FastDiT-3D’s state-of-the-art per-
formance in generating high-fidelity and diverse 3D point
clouds across categories, evidenced by improved 1-NNA
and COV metrics for 128-resolution voxel point clouds.
Remarkably, our model achieves these results at a mere
6.5% of the original training cost. Qualitative visualiza-
tions further corroborate FastDiT-3D’s proficiency in ren-
dering detailed 3D shapes. A series of ablation stud-
ies underscore the critical roles played by the foreground-
background aware masking, the encoder-decoder architec-

ture, and the dual training objectives in the adept learning of
our FastDiT-3D. Lastly, incorporating MoE distinctly show-
cases the model’s effectiveness in accommodating multiple
categories through a unified global model.

Our main contributions can be summarized as follows:
• We present a fast diffusion transformer based on encoder-

decoder architecture for point cloud shape generation,
called FastDiT-3D, that can efficiently perform denoising
operations on masked voxelized point clouds with an ex-
treme masking ratio, which masks 99% of the background
and 95% of the foreground.

• We propose a novel foreground-background aware mask-
ing mechanism to select unmasked patches for efficient
encoding and Mixture of Expert (MoE) Feed-forward
Network in encoder blocks for multi-category adaptation.

• Comprehensive experimental results on the ShapeNet
dataset demonstrate the state-of-the-art performance
against the original DiT-3D while largely reducing the
training costs.

2. Related Work
3D Shape Generation. The domain of 3D shape genera-
tion primarily revolves around creating high-quality point
clouds through the utilization of generative models. These
methods encompass various techniques, including varia-
tional autoencoders [12, 17, 32], generative adversarial net-
works [1, 27, 28], normalized flows [16, 19, 31], and Diffu-
sion Transformers [23].

For example, Valsesia et al. [28] proposed a generative
adversarial network leveraging graph convolution. Klokov
et al. [19] introduced a latent variable model that em-
ployed normalizing flows to generate 3D point clouds.
GET3D [13] used two latent codes to generate 3D signed
distance functions (SDF) and textures, enabling the direct
creation of textured 3D meshes.

Most recently, DiT-3D [23] pioneered the integration
of denoising diffusion probabilistic models in the realm of
3D point cloud generation. Its efficacy in producing high-
quality 3D point clouds has set a new benchmark in this do-
main, showcasing state-of-the-art performance. However,
training voxel-based diffusion models for high-resolution
3D voxels (128 × 128 × 128 × 3) remains prohibitively
expensive due to the cubic complexity of attention opera-
tors, which arises from the additional dimension of voxels.
Our focus is to explore methods for expediting the training
process while upholding the generation quality. This explo-
ration is critical to mitigate the computational constraints
without compromising the fidelity of the generated outputs.
Diffusion Transformers in 3D Point Clouds Generation.
Recent research, as documented in works such as [2, 3,
25, 30], has highlighted the impressive performance of Dif-
fusion Transformers. Diffusion Transformers have exhib-
ited remarkable proficiency in generating high-fidelity im-
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Figure 2. Illustration of the proposed Fast training of Diffusion Transformers (FastDiT-3D) for 3D shape generation. The encoder blocks
with 3D global attention and Mixture-of-Experts (MoE) FFN take masked voxelized point clouds as input. Then, multiple decoder trans-
former blocks based on 3D window attention extract point-voxel representations from all input tokens. Finally, the unpatchified voxel
tensor output from a linear layer is devoxelized to predict the noise in the point cloud space.

ages and even 3D point clouds, as outlined in [23]. In
the area of image generation, the Diffusion Transformer
(DiT) [25] presented a plain diffusion Transformer archi-
tecture aimed at learning the denoising diffusion process on
latent patches. The U-ViT model [2] employed a Vision
Transformer (ViT) [11]-based architecture with extensive
skip connections.

In 3D point cloud generation, DiT-3D [23] presented a
novel plain diffusion transformer tailored for 3D shape gen-
eration, specifically designed to perform denoising opera-
tions on voxelized point clouds effectively. This method
achieved state-of-the-art performance and surpassed previ-
ous GAN-based or normalized flows-based methods by a
large margin, demonstrating the effectiveness of diffusion
transformer architecture in the 3D point cloud generation.
However, it is worth noting that the training process is com-
putationally expensive, prompting the exploration of meth-
ods to expedite and optimize the training phase.

Mask Diffusion Transformers. Transformers have
emerged as predominant architectures in both natural lan-
guage processing [9, 29] and computer vision [10, 25]. The
concept of masked training has found widespread applica-
tion in generative modeling [5, 6, 26] and representation
learning [9, 15, 20]. Within computer vision, a series of
methodologies have adopted masked language modeling.
MaskGiT [5] and MUSE [6] utilized the masked generative
transformer for predicting randomly masked image tokens,
enhancing image generation capabilities. MAE [15] further
shows masked autoencoders are scaleable self-supervised

learners. MDT [14] introduced a mask latent model-
ing scheme and achieved 3× faster learning speed than
DiT [25]. MaskDiT [34] proposed an efficient approach to
train large diffusion models with masked transformers by
randomly masking out a high proportion of patches in dif-
fused input images and achieves 31% of the training time of
DiT [25]. Our work is the first to exploit masked training
in the 3D point cloud generation domain. Even for a voxel
size of 32× 32× 32, our method achieves 10× faster train-
ing than the SOTA method DiT-3D [23] while exhibiting
superior performance.

3. Method
Given a set of 3D point clouds, we aim to learn a plain dif-
fusion transformer for synthesizing new high-fidelity point
clouds. We propose a novel fast diffusion transformer that
operates the denoising process of DDPM on masked vox-
elized point clouds, namely FastDiT-3D, which consists of
two main modules: masked design DiT for 3D point cloud
generation in Section 3.2 and Mixture-of-Experts encoder
for multi-category generation in Section 3.3.

3.1. Preliminaries

In this section, we first describe the problem setup and nota-
tions and then revisit DDPMs for 3D shape generation and
diffusion transformers on 3D point clouds.
Revisit DDPMs on 3D Shape Generation. In the realm
of 3D shape generation, prior research, as exemplified by
Zhou [23, 35], has leveraged DDPMs that involve a for-
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ward noising process and a reverse denoising process. In
the forward pass, Gaussian noise is iteratively added to a
real sample x0. By utilizing the reparameterization trick, xt

can be expressed as xt =
√
ᾱtx0+

√
1− ᾱtϵ. ϵ ∼ N (0, I),

αt = 1− βt, and ᾱt =
∏t

i=1 αi, indicating the noise mag-
nitude. If the timestep t is large, xT would be a Gaussian
noise. For the reverse process, diffusion models are trained
to optimize a denoising network parameterized by θ to map
a Gaussian noise into a sample gradually. The training ob-
jective can be formulated as a loss between the predicted
noise generated by the model ϵθ(xt, t) and the ground truth
Gaussian noise ϵ, denoted as Lsimple = ||ϵ− ϵθ(xt, t)||2.

We train the diffusion model conditioned with class la-
bel, pθ(xt−1|xt, c). During inference, new point clouds can
be generated by sampling a Gaussian noise xT ∼ N (0, I),
then gradually denoise to obtain a sample x0.
Revisit DiT-3D on Point Clouds Generation. To address
the generation challenge on inherently unordered point
clouds, DiT-3D [23] proposed to voxelize the point clouds
into dense representation in the diffusion transformers to ex-
tract point-voxel features. For each point cloud pi ∈ RN×3

with N points for x, y, z coordinates, DiT-3D first voxelized
it as input vi ∈ RV×V×V×3, where V denotes the voxel
size. Then, they applied the patchification operator with a
patch size p × p × p to generate a sequence of patch to-
kens s ∈ RL×3, where L = (V/p)3 is the total number of
patchified tokens. Finally, several transformer blocks based
on window attention were adopted to propagate point-voxel
features. To achieve the denoising process in the point cloud
space, the unpatchified voxel tensor is devoxelized into the
output noise ϵθ(xt, t) ∈ RN×3.

Although DiT-3D [23] achieved promising results in
generating high-fidelity 3D point clouds, they take the
whole number L of patchified tokens as input to the encoder
for feature propagation. The training process is computa-
tionally expensive, prompting the exploration of methods
to expedite and optimize the training phase. Furthermore,
the computational cost of 3D Transformers can be signifi-
cantly high on the increased token length. Regarding high
dimensions in 3D voxel space, such as 128 × 128 × 128,
the training cost will be 1,668 A100 GPU hours. To address
this challenge, we propose a novel fast plain diffusion trans-
former for 3D shape generation that can efficiently achieve
the denoising processes on masked voxelized point clouds,
as shown in Figure 2.

3.2. DiT-3D for Masked Voxelized Point Clouds

Motivation. In order to achieve an efficient denoising pro-
cess using a plain diffusion transformer during training,
we propose several masked 3D design components in Fig-
ure 2 based on the SOTA architecture of DiT-3D [23] for
3D point cloud generation. Specifically, we introduce a
novel foreground-background-aware masking mechanism

Category Occupied Non-occupied

Car 3.08% 96.91%
Chair 2.51% 97.49%

Airplane 1.42% 98.58%

Averaged 2.34% 97.66%

Table 1. Ratio Statistics on occupied (foreground) and non-
occupied (background) voxels for different categories. A signif-
icant ratio gap between foreground and background voxels exists.

designed to mask voxelized point clouds as input. Such a
novel strategy makes the masking ratio extremely high at
nearly 99%, effectively leveraging the high inherent redun-
dancy present in 3D data. We also replace 3D window at-
tention with 3D global self-attention in the encoder blocks
to propagate point-voxel representations from all unmasked
tokens and add multiple decoder blocks with 3D window at-
tention to take all patches tokens to predict the noise in the
point cloud space. Finally, we apply a denoising objective
on unmasked patches and a masked point cloud objective on
masked patches for training our fast diffusion transformer
on 3D point cloud generation.
Voxelized Point Clouds Masking. For a voxel of reso-
lution V × V × V with a total length of L = (V/p)3,
we apply a foreground-background masking mechanism to
selectively filter out a substantial portion of patches, al-
lowing only the remaining unmasked patches to proceed
to the diffusion transformer encoder. Our observations re-
veal a significant ratio disparity between occupied and non-
occupied voxels, as depicted in Table 1. Considering that
occupied voxels contain information richness while back-
ground voxels are information-poor, we propose treating
voxels in the occupied and non-occupied regions differently
to optimize the masking ratio and attain the highest train-
ing efficiency. Specifically, we apply a ratio of rf and a
ratio of rb to mask foreground patches sf ∈ RLf×3 in
occupied voxels and background patches sb ∈ RLb×3 in
non-occupied voxels, respectively. Therefore, we only pass
Lu = L − ⌊rfLf⌋ − ⌊rbLb⌋ unmasked patches to the dif-
fusion transformer encoder. Our masking approach differs
from random masking in image-based diffusion transform-
ers [34]. Meanwhile, we empirically observe that the direct
extension of MaskDiT [34] on point clouds does not work
well, as random masking cannot select meaningful voxels
for feature aggregation during the denoising process. Ben-
efit from the masking strategy, our method is remarkably
efficient that an extreme masking ratio rb (i.e., 99%) of
background patches could still achieve efficient denoising
for diffusion steps because the non-occupied background is
97.66% of overall voxels of all three categories on average,
as shown in Table 1.
Encoder Blocks with 3D Global Attention. For encod-
ing point-voxel representations from all unmasked patches
Lu, we apply multiple encoder blocks based on the global
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multi-head self-attention operators with each of the heads
Q,K,V having dimensions Lu×D, where Lu is the length
of input unmasked tokens. The global attention operator is

formulated as: Attention(Q,K,V) = Softmax(
QK⊤
√
Dh

V),

where Dh denotes the dimension size of each head. With
our extremely high masking ratio, Lu is 327, while L is
32,768 for 128 × 128 × 128 input voxels. Thus, given
Lu ≪ L, the computational complexity will be largely
reduced to O(L2

u) for this encoding process compared to
the original complexity O(L2) for high voxel resolutions.
The efficiency further improves when considering the use
of higher-resolution voxel input.
Decoder Blocks with 3D Window Attention. During the
decoding process, we need to take all encoded unmasked
tokens and masked tokens together, which leads to highly
expensive complexity O(L2) on the increased token length
in 3D space. The computational cost of 3D Transformers
can be significantly high. To alleviate this challenge, we
are inspired by the original DiT-3D [23] and introduce effi-
cient 3D window attention into decoder blocks to propagate
point-voxel representations for all input patch tokens using
efficient memory.

Specifically, we use a window size R to reduce the length
of total input tokens P̂ as follows. We first reshape P̂ as:
P̂ : L×D → L

R3 ×(D×R3). And then apply a linear layer
Linear(Cin, Cout)(·) to P̂ : P = Linear(D × R3, D)(P̂ ).
And P denotes the reduced input patch tokens with a shape
of L

R3 ×D. Therefore, the complexity of this decoding pro-
cess is reduced from O(L2) to O(L

2

R3 ).
Training Objectives. To achieve efficient training using
our FastDiT-3D for masked 3D point clouds, we apply a
denoising objective Ldenoising on unmasked patches to use a
mean-squared loss between the decoder output ϵθ and the
ground truth Gaussian noise ϵ, and the objective is sim-
ply defined as Ldenoising = ∥ϵ − ϵθ(xt, t)∥2. To make the
model understand the global shape, we also utilize a masked
point cloud objective Lmask on masked patches to mini-
mize the mean-squared loss between the decoder output ϵ̂
and the ground truth Gaussian noise ϵ at current step t for
masked patches. Lmask = ∥ϵ− ϵ̂∥2. Suppose a foreground-
background aware mask m ∈ {0, 1}L, the overall objective
is formulated as,

L =Et(∥(ϵ− ϵθ(xt, t))⊙ (1−m)∥2+
λ · ∥(ϵ− ϵ̂)⊙m∥2)

(1)

where Et(∥...∥2+∥...∥2) represents the loss averaged across
all timesteps, and λ denotes a coefficient to balance the
denoising objective and masked prediction. In our exper-
iments, we set it to 0.1 in default. Optimizing the denoising
and masked loss together will push the learned represen-
tations of our FastDiT-3D to capture global 3D shapes for
point cloud generation.

3.3. Mixture-of-Experts for Multi-class Generation

When trained on multi-category point clouds using one
single dense model, the generation results will degrade
compared to separately trained class-specific models. To
improve the capacity of multi-category 3D shape genera-
tion in a single model, we integrate the Mixture-of-Experts
(MoE) design to make the dense model sparse. Specifically,
we replace each encoder block’s original Feed Forward Net-
work (FFN) with a MoE FFN. Given a router network R
and several experts, which formulated as multi-layer per-
ceptions (MLP), E1, E2, ..., En, where n is the number of
experts. During encoding on the input representations xt

from different categories, the router R activates the top-k
expert networks with the largest scores R(xt)j , where j de-
notes the expert index. In order to sparsely activate differ-
ent experts, the number of selected experts k is fixed during
training and much smaller than the total number of experts
n. The expert distribution of our Mixture of Expert (MoE)
FFN layers can be formulated as:

R(xt) = TopK(Softmax(g(xt)), k)

MoE-FFN(xt) =

k∑
j=1

R(xt)j · Ej(xt)
(2)

where Ej(xt) denotes the representations from the expert
Ej , and g(·) is a learnable MLP within the router R. TopK
denotes an operator to select the top k ranked elements with
the largest scores from g(·). By optimizing these experts to
balance different categories during training, our FastDiT-3D
further achieves adaptive per-sample specialization to gen-
erate high-fidelity 3D point clouds for multiple categories.
Each class in this design is capable of capturing a unique
diffusion path, involving a variety of experts across various
layers. This approach significantly eases the challenge of
complex gradient optimization that often arises from multi-
class joint training.

3.4. Relationship to MaskDiT [34]

Our FastDiT-3D contains multiple different and efficient de-
signs for 3D shape generation compared with MaskDiT [34]
on 2D image generation:
• We utilize a foreground-background aware masking

mechanism with an extremely high masking ratio of
nearly 99%, while MaskDiT [34] adopted random mask-
ing with a relatively low masking ratio of 50%.

• Our FastDiT-3D performs efficient denoising on vox-
elized point clouds, while MaskDiT [34] needs the latent
codes from a pre-trained variational autoencoder as the
masked denoising target.

• We are the first to propose an encoder-decoder diffusion
transformer on masked 3D voxelized point clouds for
generating high-fidelity point clouds.
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Method
Chair Airplane Car

1-NNA (↓) COV (↑) 1-NNA (↓) COV (↑) 1-NNA (↓) COV (↑)
CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

r-GAN [1] 83.69 99.70 24.27 15.13 98.40 96.79 30.12 14.32 94.46 99.01 19.03 6.539
l-GAN (CD) [1] 68.58 83.84 41.99 29.31 87.30 93.95 38.52 21.23 66.49 88.78 38.92 23.58
l-GAN (EMD) [1] 71.90 64.65 38.07 44.86 89.49 76.91 38.27 38.52 71.16 66.19 37.78 45.17
PointFlow [31] 62.84 60.57 42.90 50.00 75.68 70.74 47.90 46.41 58.10 56.25 46.88 50.00
SoftFlow [16] 59.21 60.05 41.39 47.43 76.05 65.80 46.91 47.90 64.77 60.09 42.90 44.60
SetVAE [17] 58.84 60.57 46.83 44.26 76.54 67.65 43.70 48.40 59.94 59.94 49.15 46.59
DPF-Net [19] 62.00 58.53 44.71 48.79 75.18 65.55 46.17 48.89 62.35 54.48 45.74 49.43

DPM [22] 60.05 74.77 44.86 35.50 76.42 86.91 48.64 33.83 68.89 79.97 44.03 34.94
PVD [35] 57.09 60.87 36.68 49.24 73.82 64.81 48.88 52.09 54.55 53.83 41.19 50.56
LION [33] 53.70 52.34 48.94 52.11 67.41 61.23 47.16 49.63 53.41 51.14 50.00 56.53

GET3D [13] 75.26 72.49 43.36 42.77 – – – – 75.26 72.49 15.04 18.38
MeshDiffusion [21] 53.69 57.63 46.00 46.71 66.44 76.26 47.34 42.15 81.43 87.84 34.07 25.85

DiT-3D-XL [23] 49.11 50.73 52.45 54.32 62.35 58.67 53.16 54.39 48.24 49.35 50.00 56.38
FastDiT-3D-S (ours) 50.35 (+1.24) 50.27 (-0.46) 58.53 (+6.08) 60.79 (+6.47) 61.83 (-0.52) 57.86 (-0.81) 58.21 (+5.05) 58.75 (+4.36) 47.81 (-0.43) 48.83 (-0.52) 53.86 (+3.86) 59.62 (+3.24)

Table 2. Comparison results (%) on shape metrics of our FastDiT-3D and state-of-the-art models. Our method significantly outperforms
previous baselines in terms of all classes.

4. Experiments

4.1. Experimental Setup

Datasets. Following prior works [23, 33, 35], we used
ShapeNet [4] datasets, specifically focusing on the cate-
gories of Chair, Airplane, and Car, to serve as our pri-
mary datasets for the task of 3D shape generation. For a
fair comparison with previous methods, we sampled 2,048
points from the 5,000 points provided within the ShapeNet
dataset [4] for training and testing. For a fair comparison
with previous approaches [23, 33, 35] on 3D shape gener-
ation, we follow the same procedures as outlined in Point-
Flow [31] for data preprocessing, which entails global data
normalization applied uniformly across the entire dataset.
Evaluation Metrics. For comprehensive comparisons,
we adopted the same evaluation metrics called Chamfer
Distance (CD) and Earth Mover’s Distance (EMD), as
in prior methods [23, 33, 35], These metrics are instru-
mental in computing two key performance indicators: 1-
Nearest Neighbor Accuracy (1-NNA) and Coverage (COV),
which serve as primary measures of generative quality. 1-
NNA computes the leave-one-out accuracy of the 1-Nearest
Neighbor (1-NN) classifier to evaluate point cloud genera-
tion performance. This metric offers robust insights into the
quality and diversity of generated point clouds, with a lower
1-NNA score indicating superior performance. COV quan-
tifies the extent to which generated shapes match reference
point clouds, serving as a measure of generation diversity.
While a higher COV score is desirable, it’s important to note
that COV primarily reflects diversity and doesn’t directly
measure the quality of the generated point clouds. There-
fore, it’s possible for low-quality but diverse generated point
clouds to achieve high COV scores.
Implementation. Our implementation is based on the
PyTorch [24] framework. The input voxel size is set to
32×32×32×3, where V = 32 represents the spatial reso-

lution. We perform weight initialization in accordance with
established practices, with the final linear layer initialized
to zeros and other weights following standard techniques
typically employed in Vision Transformers (ViT) [11]. The
models are trained for a total of 10,000 epochs, utilizing the
Adam optimizer [18] with a learning rate of 1e − 4. Ad-
ditionally, we use a batch size of 128. In our experiments,
we set the diffusion time steps to T = 1000. By default,
we apply a small backbone architecture with a patch size
of p = 4. Notably, global attention is incorporated into all
encoder blocks, while 3D window attention is selectively
applied to specific decoder blocks (i.e., 1 and 3). The total
number n of experts is 6 in our MoE experiments.

4.2. Comparison to State-of-the-art Works

In this work, we introduce a novel and highly effective
diffusion transformer tailored for 3D shape generation.
To assess the efficacy of our proposed DiT-3D, we con-
duct a comprehensive comparative analysis against a range
of baseline methods, encompassing both non-Diffusion
Probabilistic Models (DDPM) [1, 13, 16, 17, 19, 31],
DDPM-based [21, 22, 33, 35], and Diffusion Transformer-
based [23] approaches.

We report the quantitative comparison results in Table 2.
As can be seen, we achieved the best results regarding al-
most all metrics for both 1-NNA and COV evaluations com-
pared to previous 3D shape generation approaches across
the three categories. In particular, the proposed FastDiT-
3D in model size of S remarkably superiorly outperforms
DiT-3D [23] of model size XL, which is the current state-
of-the-art diffusion transformer baseline.

Specifically, our method outperforms DiT-3D for air-
plane generation, decreasing by 0.52 in 1-NNA@CD
and 0.81 in 1-NNA@EMD, and increasing by 5.05
in COV@CD and 4.36 in COV@EMD. Furthermore,
we achieve significant performance gains compared to
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Figure 3. Qualitative visualizations of high-fidelity and diverse 3D point cloud generation.

3D Voxel WA Training 1-NNA (↓) COV (↑)
Masking Decoder Cost (hours) CD EMD CD EMD

✗ ✗ 91 51.99 50.76 54.76 57.37
✓ ✗ 11 50.09 50.02 59.79 61.45
✓ ✓ 8 50.35 50.27 58.53 60.79

Table 3. Ablation studies on masked 3D components of our
FastDiT-3D. Our model with both components has the lowest
training costs while achieving competitive results.

rb rf
Training 1-NNA (↓) COV (↑)

Cost (hours) CD EMD CD EMD

Random masking:
0% 91 51.99 50.76 54.76 57.37

50% 55 50.82 50.15 57.69 59.12
75% 31 51.32 50.46 58.03 59.37
95% 15 51.53 50.52 57.85 59.28
99% 11 82.35 85.16 29.63 23.56

Foreground-background aware masking:
95% 95% 15 50.22 50.06 59.25 61.23
97% 95% 13 50.17 50.05 59.86 61.53
99% 95% 11 50.09 50.02 59.79 61.45

99% 96% 10.5 50.86 50.65 57.63 58.52
100% 95% 10 52.87 51.69 55.23 56.82

Table 4. Exploration studies on the trade-off of non-occupied
(rb) and occupied (rf ) masking ratio. When rb, rf is 99%, 95%,
we achieve decent generation results and training costs together.

LION [33], a recent competitive baseline based on two
hierarchical DDPMs. The results demonstrate the impor-
tance of masked prediction in capturing global 3D shapes
for point cloud generation. In addition, significant gains
in chair and car generation can be observed in Table 2.
These significant improvements demonstrate the superior-
ity of our approach in 3D point cloud generation. These
qualitative results in Figure 3 also showcase the effective-
ness of the proposed FastDiT-3D in generating high-fidelity
and diverse 3D point clouds.

4.3. Experimental Analysis

In this section, we performed ablation studies to demon-
strate the benefit of introducing two main 3D design compo-
nents (3D voxel masking and 3D window attention decoder)
in 3D shape generation. We also conducted extensive ex-
periments to explore the efficiency of a mixture-of-experts
encoder, modality domain transferability, and scalability.

Ablation on 3D Masked Design Components. In order
to demonstrate the effectiveness of the introduced 3D voxel
masking and 3D window attention (WA) decoder, we ab-
late the necessity of each module and report the quantitative
results in Table 3. We can observe that adding 3D voxel
masking to the vanilla baseline highly decreases the training
hours from 91 to 11, and improves the generation results by
reducing 1.90 in 1-NNA@CD and 0.74 in 1-NNA@EMD
and increasing 5.03 in COV@CD and 4.08 in COV@EMD.
Meanwhile, introducing the WA decoder further decreases
the training hours to 8, while achieving competitive perfor-
mance. These improving results validate the importance of
3D voxel masking and 3D window attention decoder on ef-
ficient training and effective 3D point cloud generation.

Trade-off of Non-occupied/occupied Masking Ratio.
The number of non-occupied/occupied masking ratios used
in the proposed 3D voxel masking module affects the
extracted patch tokens for feature aggregation on point
cloud generation. To explore such effects more com-
prehensively, we first varied the number of masking ra-
tios from {0, 50%, 75%, 95%, 99%} in random masking,
and then ablated the non-occupied masking ratio rb from
{95%, 97%, 99%, 100%} and occupied masking ratio rf
from {95%, 96%}. It should be noted that we do not dis-
criminate non-occupied/occupied voxels for random mask-
ing, resulting in the same ratio for all voxels. The com-
parison results of chair generation are reported in Table 4.
When the number of masking ratio is 99% for random
masking, we achieve the lowest training costs but the model
does not work. With the increase of non-occupied mask-
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ImageNet Training 1-NNA (↓) COV (↑)
Pre-train Cost (hours) CD EMD CD EMD

✗ 8 50.35 50.27 58.53 60.79
✓ 7 50.39 50.28 58.62 60.86

(a) Modality transfer.

Mixture- Params 1-NNA (↓) COV (↑)
of-experts (MB) CD EMD CD EMD

✗ 54.73 52.16 51.05 56.53 58.17
✓(k = 1) 58.26 51.95 50.87 56.86 58.63
✓(k = 2) 68.92 51.72 50.56 57.38 59.26

(b) Mixture-of-experts. Top k experts are selected.

Table 5. Ablation studies on 2D pretrain and Mixture-of-experts for multi-category generation.

Figure 4. Qualitative visualizations of sampling paths across ex-
perts in Mixture-of-Experts encoder blocks for multi-class genera-
tion. The learned various paths denote different classes. It demon-
strates that each category can learn a distinct unique diffusion path.

ing ratio rb from 95% to 99%, the proposed FastDiT-3D
consistently improves results in terms of generation quality.
The superior performance on such an extreme masking ra-
tio demonstrates the importance of foreground-background
aware masking strategy which effectively optimizes the
masking ratio and obtains the highest training efficiency.
Moreover, we conduct experiments of increasing the non-
occupied masking ratio rb from 99% to 100% and increas-
ing the occupied masking ratio rb from 95% to 96%, the
results will not continually improve. This is because there
might be indispensable voxel patches in both foreground
and background for generating high-fidelity point clouds.
Influence of 2D Pretrain (ImageNet). 2D ImageNet
pre-trained weights has been demonstrated effective in
DiT-3D [23] for modality transferability to 3D generation
with parameter-efficient fine-tuning. In order to explore
such an effect of modality transferability on our FastDiT-
3D, we initialized our encoder and decoder weights from
MaskDiT [34] and continued to fine-tune all parameters
during training. The ablation results on chair generation are
reported in Table 5a. We can observe that using ImageNet
pre-trained weights achieves fast convergence with fewer
training hours and competitive results on high-fidelity point
cloud generation, where it outperforms the original random
initialization on COV metrics for generating diverse shapes.
Mixture-of-Experts FFN for Multi-class Generation. In
order to demonstrate the effectiveness of mixture-of-experts
FFN in our encoder blocks for generating high-fidelity point
clouds from multiple categories, we varied the number of
top selected experts k from {1, 2}, and report the compari-

son results in Table 5b. As can be seen, adding MoE FFN of
one expert activated with similar parameters as our FastDiT-
3D without MoE achieves better results in terms of all met-
rics. Increasing the number of activated experts further im-
proves the performance but brings more training parame-
ters. These improving results validate the importance of
the mixture-of-experts FFN in generating high-fidelity point
clouds. Figure 4 also showcases the sample paths across
different experts in MoE encoder blocks for multi-category
generation for samples from chair, car, and airplane, where
the index with the highest frequency of occurrence of ex-
perts in each layer are calculated on all training samples cor-
responding to each class. We can observe that each class is
able to learn a distinct, unique diffusion path, which dynam-
ically chooses different experts in different layers, improv-
ing the model’s capacity to generate multiple categories.

5. Conclusion
In this work, we propose FastDiT-3D, a novel fast diffu-
sion transformer tailored for efficient 3D point cloud gen-
eration. Compared to the previous DiT-3D approaches,
Our FastDiT-3D dynamically operates the denoising pro-
cess on masked voxelized point clouds, offering significant
improvements in training cost of merely 6.5% of the origi-
nal training cost. And FastDiT-3D achieves superior point
cloud generation quality across multiple categories. Specif-
ically, our FastDiT-3D introduces voxel-aware masking to
adaptively aggregate background and foreground informa-
tion from voxelized point clouds, thus achieving an extreme
masking ratio of nearly 99%. Additionally, we incorporate
3D window attention into decoder Transformer blocks to
mitigate the computational burden of self-attention in the
context of increased 3D token length. We introduce Mix-
ture of Expert (MoE) layers into encoder transformer blocks
to enhance self-attention for multi-category 3D shape gen-
eration. Extensive experiments on the ShapeNet dataset
demonstrate that the proposed FastDiT-3D achieves state-
of-the-art generation results in high-fidelity and diverse 3D
point clouds. We also conduct comprehensive ablation stud-
ies to validate the effectiveness of voxel-aware masking and
3D window attention decoder. Qualitative visualizations of
distinct sampling paths from various experts across differ-
ent layers showcase the efficiency of the MoE encoder in
multi-category generation.
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Appendix
In this appendix, we provide the following material:
• additional experimental analyses on multiple decoder

hyper-parameters and various voxel sizes in Section A,
• qualitative visualization for comparison with state-of-the-

art methods, various voxel sizes, diffusion process, and
more generated shapes in Section B,

• a demo to show high-fidelity and diverse point clouds
generation in Section C,

• additional discussions on limitations and broader impact
in Section D.

A. Additional Experimental Analyses
In this section, we perform additional ablation studies to
explore the effect of multiple hyper-parameters design in
decoder and window attention. We also conduct additional
experiments to demonstrate the advantage of the proposed
FastDiT-3D against DiT-3D [23] on different voxel sizes in
terms of training costs and performance.

A.1. Multiple Hyper-parameters Design in Decoder

Multiple hyper-parameters including decoder depth/width,
window size, and number of window attention layers, in
the 3D window attention decoder are also critical for us to
reduce expensive training costs and achieve superior perfor-
mance. To explore the impact of those key factors, we ab-
lated the decoder depth from {4, 2}, the decoder width from
{384, 192}, the window size from {4, 2}, and the number
of window attention layers from {2, 3}. The quantitative re-
sults on chair generation are compared in Table 6. As shown
in the table, when the decoder depth and decoder width are
4 and 384, our FastDiT-3D without window attention layers
achieves the best results while having decent training costs.
Adding window attention with the window size of 4 and the
number of layers of 2 further decreases the training hours
and achieves competitive performance.

A.2. Quantitative Results on Various Voxel Sizes

To validate the efficiency and effectiveness of the proposed
FastDiT-3D on different voxel sizes, we varied the voxel
size V from {32, 64, 128}, and compared our framework
with DiT-3D [23], the state-of-the-art approach for point
clouds generation. The quantitative comparison results are
reported in Table 7. We can observe that when the voxel
size is 32, our FastDiT-3D achieves better results than DiT-
3D [23] in terms of all metrics while using only 8.8% train-
ing GPU hours. With the increase in the voxel size, we
achieve better generation performance and training gains
compared to the strong baseline. In particular, the pro-
posed FastDiT-3D improves all metrics in terms of gener-
ating 128-resolution voxel point clouds and uses only 6.5%
of the training time in DiT-3D [23], reducing the training

SetVAE

DPM

PVD

DiT-3D

FastDiT-3D
(ours)

Figure 5. Qualitative comparisons with state-of-the-art methods
for high-fidelity and diverse 3D point cloud generation. Our pro-
posed FastDiT-3D produces better results for each category.

time from 1668 A100 GPU hours to 108 A100 GPU hours.
These significant results further demonstrate the efficiency
of our method in generating high-fidelity and diverse 3D
point clouds.

B. Qualitative Visualizations
In order to qualitatively demonstrate the effectiveness of
the proposed FastDiT-3D in 3D point clouds generation,
we compare the generated point clouds with previous ap-
proaches. Meanwhile, we showcase qualitative visualiza-
tions of generated point clouds on the chair category using
various voxel sizes. Furthermore, we also visualize the dif-
fusion process of different categories generation from the
denoising sampling steps. Finally, we provide more visual-
ization of 3D point clouds generated by our approach.

B.1. Comparisons with State-of-the-art Works

In this work, we propose a novel framework for generating
high-fidelity and diverse 3D point clouds. To qualitatively
demonstrate the effectiveness of the proposed FastDiT-3D,
we compare our method with previous approaches: 1) Set-
VAE [17]: a hierarchical variational autoencoder for latent
variables to learn coarse-to-fine dependencies and permu-
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Decoder Training 1-NNA (↓) COV (↑)
Depth Cost (hours) CD EMD CD EMD

4 11 50.09 50.02 59.79 61.45
2 7 51.26 50.85 55.63 57.28

(a) Decoder depth.

Decoder Training 1-NNA (↓) COV (↑)
Width Cost (hours) CD EMD CD EMD

384 11 50.09 50.02 59.79 61.45
192 8 51.78 51.51 55.21 56.17

(b) Decoder width.

Window Training 1-NNA (↓) COV (↑)
Size Cost (hours) CD EMD CD EMD

4 8 50.35 50.27 58.53 60.79
2 6 51.08 50.87 56.82 58.05

(c) Window size.

# WA Training 1-NNA (↓) COV (↑)
Layers Cost (hours) CD EMD CD EMD

2 8 50.35 50.27 58.53 60.79
3 7 51.26 51.03 56.31 57.56

(d) Number of Window Attention Layers.
Table 6. Ablation studies on decoder depth, width, window sizes, and the number of window attention layers.

Method Voxel Training 1-NNA (↓) COV (↑)
Size Cost (hours) CD EMD CD EMD

32 DiT-3D [23] 91 51.99 50.76 54.76 57.37
FastDiT-3D (ours) 8 50.35 50.27 58.53 60.79

64 DiT-3D [23] 319 51.22 50.52 55.25 57.52
FastDiT-3D (ours) 25 50.29 50.23 58.57 60.83

128 DiT-3D [23] 1668 50.95 50.36 56.03 58.16
FastDiT-3D (ours) 108 50.01 50.03 59.95 62.08

Table 7. Quantitative results on various voxel sizes (32, 64,
128). Our model has the lowest training costs while achieving
competitive results, compared to DiT-3D [23], the state-of-the-art
approach.

tation invariance; 2) DPM [22]): the first denoising diffu-
sion probabilistic models (DDPM) method that applied a
Markov chain conditioned on shape latent variables as the
reverse diffusion process for point clouds; 3) PVD [35]: a
robust DDPM baseline that adopts the point-voxel repre-
sentation of 3D shapes; 4) DiT-3D [23]: the state-of-the-art
diffusion transformer for 3D point cloud generation.

The qualitative visualization results are reported in Fig-
ure 5. As can be observed, 3D point clouds generated by
our FastDiT-3D are both high-fidelity and diverse. The
non-DDPM approach, SetVAE [17], performs the worst
compared to other DDPM methods, although they applied
a hierarchical variational autoencoder tailored for coarse-
to-fine dependencies. Furthermore, the proposed frame-
work produces more high-fidelity point clouds compared
to DPM [22] and PVD [35] methods. Finally, we achieve
better performance than DiT-3D [23] which applied a plain
diffusion transformer to aggregate representations from full
voxels. These meaningful visualizations demonstrate the
effectiveness of our method in high-fidelity and diverse 3D
point clouds generation by adaptively learning background
or foreground information from voxelized point clouds with
an extreme masking ratio.

B.2. Various Voxel Sizes

To validate the effectiveness of our framework in generating
high-fidelity and diverse 3D point clouds in different voxel

sizes, we visualize generated point clouds in different voxel
size from {32, 64, 128} on the chair category in Figure 6.
As can be seen, with the increase of the voxel size, our
FastDiT-3D achieves better results in high-fidelity 3D point
clouds generation. More importantly, the proposed frame-
work produces more fine-grained details when it comes to
generating 128-resolution 3D point clouds. These mean-
ingful qualitative visualizations furthermore show the supe-
riority of our approach in generating high-fidelity 3D point
clouds on different voxel sizes.

B.3. Diffusion Process

In order to further demonstrate the effectiveness of the
proposed FastDiT-3D, we visualize the diffusion process
of generating different categories on 1000 sampling steps.
Specifically, we sample five intermediate shapes in the pre-
vious 900 steps and four intermediate shapes in the last 100
steps for better visualization. Note that for each column,
we show the generation results from random noise to the fi-
nal 3D shapes in a top-to-bottom order. Figure 7 shows the
qualitative visualizations of the diffusion process for chair
generation, which validates the effectiveness of the pro-
posed FastDiT-3D in generating high-fidelity and diverse
3D point clouds. The qualitative visualizations of other cat-
egories in Figure 8 and 9 also demonstrate the efficiency of
the proposed framework in multi-category generation.

B.4. More Visualizations of Generated Shapes

To further validate the effectiveness of our method in gener-
ating high-fidelity and diverse 3D point clouds, we visualize
more qualitative results generated by our FastDiT-3D from
chair, airplane, and car categories in Figure 10, 11, and 12.
These meaningful results from different categories further
showcase the effectiveness of our framework in generating
high-fidelity and diverse 3D point clouds.

C. Demo
The demo is available at our website: https://DiT-
3D.github.io/FastDiT-3D.
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Voxel Size
32

Voxel Size
64

Voxel Size
128

Figure 6. Qualitative visualizations of generated point clouds on chair category for various voxel sizes. Rows denote 32, 64, and 128 in
top-to-bottom order. The results showcase the efficiency of our method in generating high-fidelity and diverse 3D point clouds.

D. Limitations & Broader Impact
Although the proposed FastDiT-3D achieves superior re-
sults in generating high-fidelity and diverse point clouds
given classes, we have not explored the potential usage
of explicit text control for 3D shape generation. Further-
more, we can scale our FastDiT-3D to large-scale text-3D
pairs [7, 8] for efficient training on text-to-3D generation.
These promising directions will leave for future work.
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Figure 7. Qualitative visualizations of diffusion process for chair generation. The generation results from random noise to the final 3D
shapes are shown in top-to-bottom order in each column.
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Figure 8. Qualitative visualizations of diffusion process for airplane generation. The generation results from random noise to the final 3D
shapes are shown in top-to-bottom order in each column.
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Figure 9. Qualitative visualizations of diffusion process for car generation. The generation results from random noise to the final 3D
shapes are shown in top-to-bottom order in each column.
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Figure 10. Qualitative visualizations of more generated shapes on chair category. The results showcase the effectiveness of our framework
in generating high-fidelity and diverse 3D point clouds.
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Figure 11. Qualitative visualizations of more generated shapes on airplane category. The results showcase the effectiveness of our
framework in generating high-fidelity and diverse 3D point clouds.
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Figure 12. Qualitative visualizations of more generated shapes on car category. The results showcase the effectiveness of our framework
in generating high-fidelity and diverse 3D point clouds.
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